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The modeling and numerical simulation studies of fluid flow and enhanced heat 
transfer in round tubes filled with rolled copper mesh are described in this paper. 
The tubes were subjected to uniform heat flux, and water was used as the energy 
transport fluid. The numerical solution was obtained by a finite difference code 
developed in this investigation. The fluid flow was modeled by a modified Ergun- 
Forchheimer-Brinkman equation. The energy transfer was based on a single equa- 
tion model; i.e., local thermal equilibrium between the solid and fluid phases. 
Variations of the local Nusselt number and local heat transfer coefficient were 
obtained accurately by the use of nonuniform grid size in the radial direction in the 
numerical simulations. The numerical results obtained were compared with the 
experimental results obtained by the Experimental Facilities Division at Argonne 
National Laboratory, and the twowere  in good agreement. 
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Introduction 

In high-heat-flux applications, it is desirable to enhance the heat 
transfer in the cooling channels used for cooling critical compo- 
nents. Among these applications, cooling of the front-end and 
beamline components of synchrotrons is an important part. Kuzay 
(1990), in an extensive study regarding Biot number dependency 
of heat transfer enhancement techniques, has shown that, with a 
good choice of the material (such as oxygen-free, high-conductiv- 
ity (OFHC) copper), heat transfer in the cooling components will 
be convection limited. Therefore, efforts in heat transfer enhance- 
ment should concentrate on improving the heat transfer in the 
cooling channels; i.e., on the convective heat transfer side. To 
this end, cooling channels with porous inserts have been an 
attractive choice, because the effective thermal conductivity of 
such a porous medium could be an order of magnitude higher 
than that of water. Use of such channels, therefore, could in- 
crease the local heat transfer coefficients dramatically. This prin- 
ciple has been widely used in the Advanced Photon Source 
front-end and beamline component designs at Argonne National 
Laboratory (ANL) (Kuzay 1994). Slightly different arrangements, 
under the name of "pumped single-phase porous media heat 
exchangers," have been developed for other potential applica- 
tions, such as cooling of high-power optical structures and cool- 
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ing of susceptors for plasma processing. One such unit, which 
was tested at Sandia National Laboratories, was reported to have 
handled a heat flux of 5.6 M W / m  2 (Rosenfeld and Lindemuth 
1993). 

To understand the heat transfer phenomena in cooling chan- 
nels with copper mesh inserts, an experimental program was 
initiated at the Experimental Facilities Division at ANL. Copper 
tubes internally brazed to rolled copper meshes of known poros- 
ity were instrumented and carefully tested to obtain the heat 
transfer coefficient and the friction factor experimentally under 
uniform heat flux conditions (Kuzay et al. 1991). It has been 
observed that large heat transfer enhancement is possible using 
these porous conductive inserts in the cooling channels. Experi- 
mentally, relative to plain channels, up to a tenfold increase in 
the heat transfer coefficient has been obtained with the brazed 
porous inserts at the expense of highly increased pressure drop. 

Experimental investigations dealing with both single- multi- 
phase flows with phase change in tubes with porous inserts have 
been reported (Megerlin et al. 1974; Gortyshov et al. 1991). 
Although there is lack of investigations reported on modeling of 
this specific type of porous medium formed by rolled copper 
mesh, models developed for other types of porous media such as 
packed beds may be a good starting point (see, for example, 
Vafai and S/Szen 1990; Poulikakos and Renken 1987). 

In the present study, we develop a simple yet rigorous mathe- 
matical model and numerical code for simulating the heat transfer 
and fluid flow in the copper tubes with rolled copper mesh inserts 
brazed to the tube walls. The objective is to understand better the 
heat transfer and fluid flow phenomena in porous cooling chan- 
nels. Moreover, once validated by the experimental results, the 
numerical code developed can be used for parametric studies. 

0142-727X/96/$15.00 
SSDI 0142-727X(95)00095-X 



In this investigation, an accurate model for the fluid flow is 
established based on the experimental data. Namely, the Ergun- 
Forchheimer equation is modified to represent the effect of the 
structure of the porous matrix under investigation on the fluid 
flow/pressure drop relationship. There is an unheated portion of 
approximately 2.5 diameters length on each end of the tube used 
in the experiments. Therefore, the flow is assumed to be hydro- 
dynamically fully developed in the heated region. The common 
assumption of linear pressure variation along the tube is used in 
this study. Energy transfer is modeled based on local thermal 
equilibrium between the copper matrix and the water; i.e., a 
single-equation model. 

Formulation and analysis 

Modification of  the Ergun-Forchheimer equation for 
porous matrix formed with rolled copper mesh 

For fluid flow in a packed bed of spherical particles, the viscous 
and inertia effects are related to the pressure gradient by the 
Ergun equation (Ergun 1952) 

dP ~u m (1 - ~)2 pu 2 (1 - ~) 
- - -dx = 150 Dp: ~ + 1.75 Dp ~3 ( 1 )  

Because of the nature of the tortuous paths in the rolled 
copper mesh that forms the porous matrix under study, the 
momentum equation expressed in a form similar to the Ergun 
equation will be modified; i.e., the two constants in Equation 1 
will be different to express different viscous and inertia effects in 
the porous matrix as compared to those in a packed bed. This is 
done as suggested by Cai (1993) by writing the modified equa- 
tion as follows: 

OP ~LUrn (1 - e) 2 p u2 (1 - ~) 

- d--x = CL d~ e ~ + CT-df  ~ (2) 

w h e r e  d f  represents a characteristic length, which is the fiber 
diameter of the copper mesh, and C L and C T are two empirical 
constants that are used to model the viscous and inertia effects 
accurately. 

In the present study, the porous medium considered was rolled 
copper mesh inserted in round tubes. The porous matrix used in 
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Table 1 Values of C L and C T 

CL CT 

Tube #1 177.181155 0.402619 
Tube #2 156.172914 0.493956 

the first tube had 75% porosity and consisted of rolled copper 
mesh of size 203.2 × 203.2 × 0.32 mm; whereas, that used in the 
second tube had 85% porosity with a mesh size of 203.2 × 203.2 
× 0.2032 mm. The tube inner diameter was 9.525 ram, and the 
heated tube length was 21.6 cm. The experimental data available 
for pressure gradient for different flow rates for each tube 
configuration provided the basis for the necessary analysis. C L 
and C r were determined from the experimental data by linear 
regression with the least-squares method. These values are listed 
in Table 1. Comparisons of these values with those of Ergun's 
(1952) equation reveal that, although the viscous effects are 
comparable to those of packed beds, the inertia effects are quite 
different, because the characteristics of the form drag are differ- 
ent due to different structure. 

Modeling of  the constant wall-heat-flux problem 
The model developed for analyzing the fluid flow and heat 
transfer in the porous round tube is based on the momentum 
equation developed in the previous section modified by the 
Brinkman (1947) extension as 

de 2÷C 0u2 
- d ~ =  CLd} ~3 T df -~ ¢ r dr~ d r ]  

(3) 
where u denotes the superficial velocity, and the last term on the 
right-hand side is the Brinkman term, which ensures the no-slip 
boundary condition at the wall. 

Energy transfer is based on a one-equation model; i.e., local 
thermal equilibrium between the solid and fluid phases in the 
porous matrix. The transient energy equation is given for the 
axisymmetric problem as 

aT aT 
(~pfc, + (1 - ~)p,c,)Tt + pfc,  UTx 

0 { OT~ 1 0 [ OT 
"ff'S. | kaf "~-S | + (4) = 7~Ftkeffr~F) 

Notation 

C L 
Cp 

Cr 
d r 
D 
Do 

h 
k 
rh 
n 
Nu 
P 
q~ 
r 

R 
Re 
t 

empirical constant in Equations 2 and 3 
specific heat, J /kgK 
empirical constant in Equations 2 and 3 
fiber diameter, m 
inner diameter of tube, m 
outer diameter of tube, m 
particle diameter, m 
friction factor 
heat transfer coefficient, W/m2K 
thermal conductivity, W / m K  
mass flow rate, kg/s  
constant in Equation 5 
Nusselt number 
pressure, Pa 
inner wall heat flux, W/m2K 
coordinate variable in radial direction, m 
inner radius of tube, m 
Reynolds number, PUmD/tx 
time, s 

T 
U 

X 

temperature,°C 
superficial velocity, m / s  
coordinate variable in axial direction, m 

Greek 

ct multiplication factor in equation (7) 
A r grid size in r-direction, m 

porosity 
dynamic viscosity, kg/m s 

p density, kg /m 3 

Subscripts 

eft effective 
f fluid phase 
m mean (bulk) 
o outer wall 
s solid phase 
w inner wall 
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The effective thermal conductivity of the porous medium is based 
on the work of Koh and Fortini (1971) and modified by 
Januszewski et al. (1977) for felt metals. It is given as follows: 

where n is a constant taken to be equal to 10 in this study, and i 
represents either x or r. The first term in Equation 4 goes to zero 
at steady state. However, the solution procedure was based on an 
explicit finite difference numerical scheme, and, therefore, the 
transient term was maintained in the energy equation. The bound- 
ary conditions for the problem were 

No-slip boundary condition: 

at r = R  u = 0 

Symmetry condition 

du 
at r = 0 - -  = 0 (6) 

d r  

The boundary conditions for the energy equation are 

Inlet condition: 

at x = 0 T = Tin 

Inner wall heat flux condition: 

OT 
at r = R q~ = keff-~r 

r=g 

Symmetry condition; 

OT 
at r = 0 -~r r=0 = 0 (7) 

Numerical solution 

Finite difference methods were used to obtain the solutions for 
the momentum and energy equations. To capture the variation of 
fluid velocity and the local heat transfer coefficient along the 
tube accurately, a very fine grid in the radial direction was 
necessary in the vicinity of the tube walls. To avoid costly CPU 
time, a variable grid was used in the radial direction. This was 
based on the compound interest grid in which each grid size is a 
constant multiple of the neighboring one. Mathematically, A r i_ 1 
= ct(Ari) , where ct is the multiplication factor. With this ar- 
rangement, a very fine grid was obtained in the vicinity of the 
wall of the tube, while the grid size became coarser in the core 
region where the variations in both velocity and temperature 
occur less drastically. 

The momentum and energy equations were solved indepen- 
dently because of the incompressible flow assumption. The non- 
linear (Forchheimer) term in the momentum equation was lin- 
earized by Newton's method (Nakamura 1986). Second-order 
accurate finite difference approximations of the first and second 
derivatives were obtained by the Taylor expansion method. The 
resulting system of equations yielded a tridiagonal system of 
linear algebraic equations, the solution of which was obtained by 
the well-known Thomas algorithm (Anderson et al. 1984). A 
convergence criterion, which required less than a difference of 
10 -12 m / s  between the values of the velocity at every nodal 
point in two consecutive iterations, was implemented. 

The finite difference form of the energy equation was ob- 
tained by using Euler forward differencing for the temporal 
derivative term and second-order accurate central differencing for 
the spatial derivative terms. One exception to this was the 
treatment of the convective term in the energy equation (uOT/Ox) 

for which upwind differencing was used rather than central 
differencing in order to make the numerical scheme stable. 
Because of the strong parabolic nature of the energy equation, at 
the nodes on the exit plane of the tube, the second derivative term 
in the x-direction was approximated by a second-order accurate 
backward differencing. The resulting finite difference equations 
yielded the temperature in explicit form, and, therefore, the 
temperature distribution was obtained by choosing an appropriate 
time-step that would make the numerical scheme stable. Because 
we were interested in the steady-state solution of the problem, we 
chose by trial and error a time-step close to the largest one that 
would yield a stable solution. Hence, the accuracy of the transient 
solution was not reliable, but that of the steady-state solution 
was. A value of 1.05 for the multiplication factor c~ and an 
optimum 51 × 51 mesh were found to yield satisfactory results 
with less than 0.6% difference in any computed temperature 
value when the mesh size was increased to 71 X 51 or 51 × 81. 

Friction factor 

The definition used in the experimental work was implemented 
into the numerical code as follows: 

d P  
- - - O  

dx  
f= p u ~ / 2  (8) 

where the mean velocity was computed numerically from 

u ( A r i + A r i _ l )  
f oUr  dr ~.iuiri+l/2 2 

u m - -  -- (9) 
R (A r ,+Ar ,_ l )2  

f o r d r  Y~'iri+ l/2 

Because of symmetry, for i = 1, A r  i = Ar i_ 1, and so (Ar i + 
Ar i_ l ) /2  = Ar x. 

Local heat transfer coefficient and the local Nusselt 
number 

The local heat transfer coefficient was defined and calculated 
from the following: 

q'w' 
h ( x )  = r w ( x )  - rm(x) (lO) 

and the local Nusselt number was defined as 

h( x ) D  q'~ D 
N u ( x )  (11) kf Tw(x ) -- Zm(x ) k'--f 
where w represents inner wall and m represents for mean (bulk). 
As in the case of the Nusselt number and the heat transfer 
coefficient, the bulk temperature was defined based on the prop- 
erties of the fluid phase as follows: 

n ( A r i + A r i _ l )  foUrr(x) dr Eiu ir i+l /2Ti (x)  2 
rm(x )  R -- 

f oUr d r  Eiuir i+l /2(  Ari -F Ari_ 1 

(12) 

Again, because of symmetry, for i = 1, A r~ = A r i_1, and so 
( A r i + Ari_ l ) /2  = Ar r 

Calculation of  the outer wall temperature 

The inner wall temperature distribution was obtained from the 
finite difference solution. The outer wall temperature was cam- 
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Figure 1 
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puted by the assumption of steady state with heat flowing in the 
radial direction across the wall thickness. With the assumption 
that the rate of total heat transfer (power) was distributed uni- 
formly on the heated surface of the tube, the inner wall heat flux 
qw' was computed based on the inner surface area of the tube. 
This followed from the constant rate of heat transfer in the radial 
direction. Steady-state formulation yielded (Holman 1990) 

To( x) = T,.( x) + ~ - ln (  ~ ) (13) 

where R denotes the inner radius of the tube. 

Results and discussion 

The numerical solution for each run considered yielded a mean 
velocity that was not more than 1.44% different from the corre- 
sponding experimental value. This difference took into account 
both the reliability factor in the linear regression analysis in 
determining C L and C r (which were fixed for each tube) as well 
as the numerical errors in computing the mean velocity of the 
flow. The velocity profile for a sample case with Re = 6300 for 
Tube # 1 is shown in Figure 1. The good agreement between the 
numerical and experimental values of the mean (superficial) 
velocity of the flow also yielded very good agreement between 
the numerical and experimental values of the friction factor 
computed by using Equation 9. This comparison is depicted in 
Figure 2 for the runs with Tubes #1  and #2.  
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Figure 3 Various temperature distributions along the tube 

The variation of different temperatures along the length of the 
tube for a typical run are depicted in Figure 3. The only tempera- 
tures measured in the experiments were those of the outer wall at 
specific locations and the mixed mean inlet and outlet tempera- 
tures. The measured outer wall temperatures and the correspond- 
ing simulated values for one run for each tube are shown in 
Figure 4. In general, the numerical simulation predicts slightly 
higher wall temperatures. 

The variation of the local heat transfer coefficient along the 
tube wall was determined after the variation of the mean (bulk) 
temperature was obtained from the numerical simulations. The 
variation of the local heat transfer coefficient computed for a 
typical case with Re = 6300 for Tube #1 by using three different 
finite difference nodal meshes; namely, 51 × 51, 51 × 81, and 
71 × 51 nodes is depicted in Figure 5. It can be seen from this 
figure that 51 × 51 nodes provide sufficiently accurate results. 

Finally, the average heat transfer coefficient and the average 
Nusselt number for the total tube length were computed for each 
run for each tube. This was performed by taking the arithmetic 
mean of the local heat transfer coefficient (or Nusselt number) 
values at all the nodes on the inner wall of the tube with the 
exception of the first node, which is a singular point. These 
average values were compared with those determined experimen- 
tally in which the assumptions that were made included linear 
bulk temperature variation and an average heat transfer coeffi- 
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cient that was evaluated at the midpoint of the tube (Kuzay et al. 
1991). The comparison between the numerical results and the 
experimental ones is depicted in Figures 6 and 7. The general 
trend in these numerical simulations is slight under prediction of 
the heat transfer coefficient (or Nusselt number) at larger Reynolds 
numbers. Although this may not be seen in the case of Tube #1 
for the lower Reynolds number range, the discrepancy was in the 
experimental data for which the steady state was not obtained 
properly. The primary reason for the underprediction of the heat 
transfer coefficient and the overprediction of outer wall tempera- 
ture is that we used a conservative value for the effective thermal 
conductivity for the porous matrix. The constant n in Equation 5 
was reported (Koh and Fortini 1971) to vary between 8 and 12 
for porous copper. Moreover the experiments reported in the 
same reference were conducted with air rather than water as the 
fluid medium. Therefore, the value of 10 used in our simulations 
should be considered a conservative estimate. The numerical 
simulations were actually repeated by setting n to be equal to 8. 
With this adjustment, although the outer wall temperatures pre- 
dicted from numerical simulations slightly improved, the heat 
transfer coefficient was overpredicted. Hence, we reported the 
more conservative results. Note that, in numerical simulation of 
this type of problem, one of the most challenging aspects is the 
selection of the model to be used for the effective thermal 
conductivity of the porous matrix, because there is usually very 
limited information relevant to the specific problem under inves- 
tigation. Moreover, most theoretical models overpredict the effec- 

4 0 0 0 0 :  

. 30000 

i 
' ~  2 0 0 0 0  

8 

ioooo 

, , , . , . , 
v 

v 

....-- 

rl . J:2--" 

v Experimental (Tube I) 
Numerical. simulation (Tube l ) 

D Experimental (Tube 2 )  
..... Numerical simulation (Tube 2) 

4 0 0 0 0  

3 0 0 0 0  

2 0 0 0 0  

1 0 O 0 0  

, ; b I , I , I t I , i , I 0 
°000 7 oo 9000 ilOOO 13000 isooo i7000 19000 

Reynolds number 

Figure 6 Variation of average heat transfer coefficient with 
Reynolds number 

== 

Z 

Figure 7 
number 

000 I 

5 0 0  i 

4 0 0  i 

3 0 0  

2 0 0  

1 0 0  

• ' " J " ' ' ~ " v j v' 

/ 
6 0 0  

5 0 0  

4 0 0  

3 O 0  

2 0 0  

1 0 0  

0 

q E x p e r i m e n t a l  ( T u b e  1 ) 
N u m e r i c a l  s i m u l a t i o n  ( T u b e  1 ) 

U E x p e r i m e n t a l  ( T u b e  2 )  
..... Numerical simulation (Tube 2 )  

0 ' 7 0 0 0  ' 9 0 0 0  ' L , ~ , L , k , 5 0 0 0  1 1 0 0 0  1 3 0 0 0  1 5 0 0 0  1 7 0 0 0  1 9 0 0 0  

Reynolds number 

Variation of average Nusselt number with Reynolds 

tive thermal conductivity. Researchers should, therefore, exercise 
caution in choosing a theoretical or empirical model. 

It should be emphasized that the enhancement in heat transfer 
by the use of porous inserts will be at the cost of a large pressure 
drop. A pressure drop of such magnitude may not be allowable in 
certain applications. A method to improve this aspect would be 
the use of more structured porous inserts that will result in less 
form drag in the longitudinal direction. One example that could 
be suggested is a brush-type porous insert consisting of pins fixed 
on an axial rod at regular angles. However, it should also be 
ensured that as the pressure drop is improved, the effective 
thermal conductivity of the porous structure will not decrease 
considerably. 
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